Extracting Attributed Verification and Debunking Reports from Social Media: MediaEval-2015 Trust and Credibility Analysis of Image and Video

نویسنده

  • Stuart E. Middleton
چکیده

Journalists are increasingly turning to technology for pre-filtering and automation of the simpler parts of the verification process. We present results from our semi-automated approach to trust and credibility analysis of tweets referencing suspicious images and videos. We use natural language processing to extract evidence from tweets in the form of fake & genuine claims attributed to trusted and untrusted sources. Results for team UoS-ITI in the MediaEval 2015 Verifying Multimedia Use task are reported. Our 'fake' tweet classifier precision scores range from 0.94 to 1.0 (recall 0.43 to 0.72), and our 'real' tweet classifier precision scores range from 0.74 to 0.78 (recall 0.51 to 0.74). Image classification precision scores range from 0.62 to 1.0 (recall 0.04 to 0.23). Our approach can automatically alert journalists in real-time to trustworthy claims verifying or debunking viral images or videos.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multimodal-based Diversified Summarization in Social Image Retrieval

In this paper, we describe our approach and its results for the MediaEval 2015 Retrieving Diverse Social Images task. The main strength of the proposed approach is its flexibility that permits to filter out irrelevant images, and to obtain a reliable set of diverse and relevant images. This is done by first clustering similar images according to their textual descriptions and their visual conte...

متن کامل

DCLab at MediaEval 2015 Retrieving Diverse Social Images Task

In this paper we present our contribution to the MediaEval 2015 Retrieving Diverse Social Images Task which requested participants to provide methods for refining Flickr image retrieval results thus to increase their relevance and diversification. Our approach is based on re-ranking the original result, using a precomputed distance matrix and a spectral clustering scheme. We use color related v...

متن کامل

Recod @ MediaEval 2015: Diverse Social Images Retrieval

This paper presents the RECOD team experience in the Retrieving Diverse Social Images Task at MediaEval 2015. The teams were required to develop a diversification approach for social photo retrieval. Our proposal is based on irrelevant image filtering, reranking, rank aggregation, and diversity promotion. We proposed a multimodal approach and exploited image metadata and user credibility inform...

متن کامل

Visual and Textual Analysis of Social Media and Satellite Images for Flood Detection @ Multimedia Satellite Task MediaEval 2017

This paper presents the algorithms that CERTH team deployed in order to tackle disaster recognition tasks and more specifically Disaster Image Retrieval from Social Media (DIRSM) and FloodDetection in Satellite images (FDSI). Visual and textual analysis, as well as late fusion of their similarity scores, were deployed in social media images, while color analysis in the RGB and nearinfrared chan...

متن کامل

Retrieving Relevant and Diverse Image from Social Media Images

We describe our approach and its result for MediaEval 2015 Retrieving Diverse Social Images Task. The basic idea is removing the irrelevant images and then obtaining the diverse image using a greedy strategy. Experiment results show our method can retrieve diverse images with a moderate relevance to the topic.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015